5th International Workshop on PET in Lymphoma Palais de l'Europe. Menton, France September 19 -20, 2014

Integrating PET and MRD in follicular lymphoma

Stefano Luminari, MD

Medical Oncology

Università di Modena e Reggio Emilia, Modena Italy

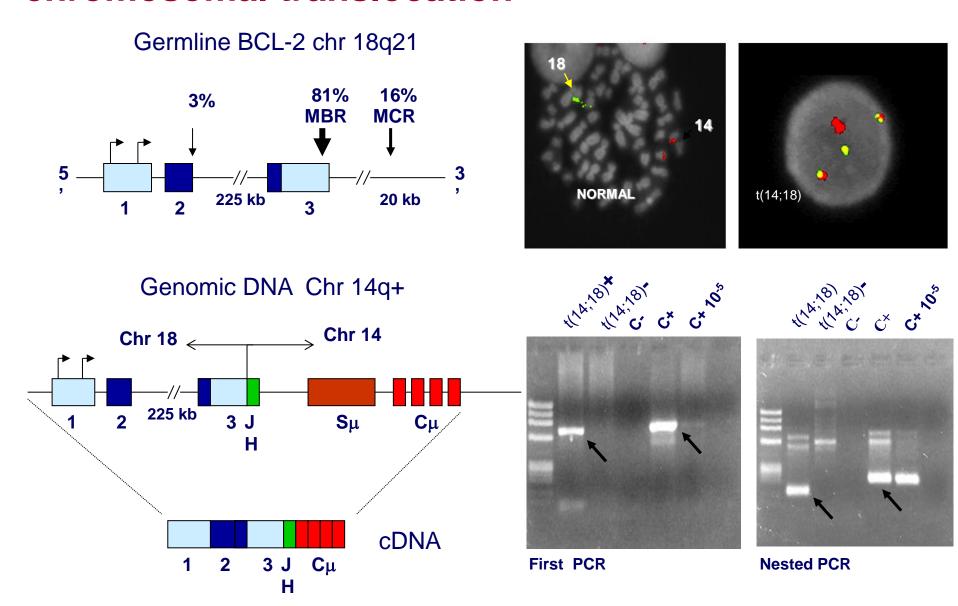
Current concepts in FL

- The identification patients at high risk of relapse is a critical goal of modern research in oncohematology and FL.
- Individual risk of relapse is estimated:
 - Before therapy: Prognostic scores (FLIPI and FLIP2), biomarkers, SNPs, GEP mol. signatures
 - After therapy: FDG-PET, CT-scan, MRD

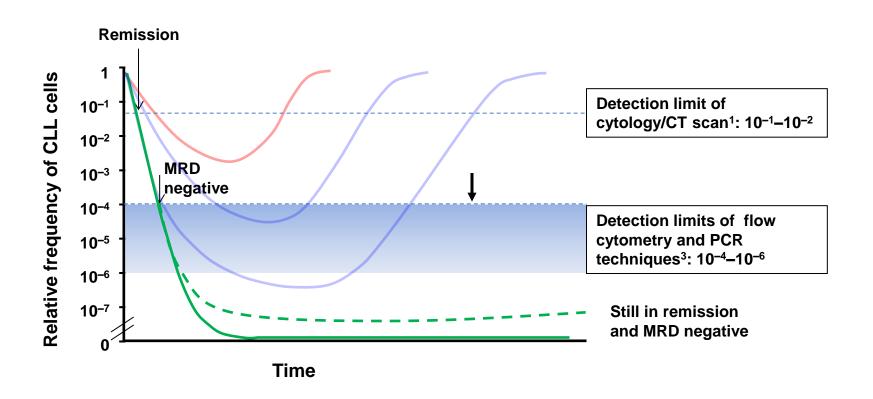
Response assessment in FL

PET:

- Has the highest prognostic impact on PFS and OS Trotman et al Lancet Hematol 2014 Vol1 n1 p1
- Is now recommended for staging and response assessment in updated criteria Cheson et al JCO 2014

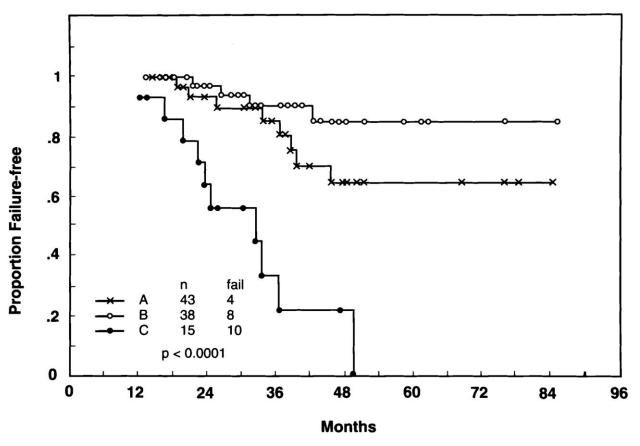

CT:

- Is difficult to assess (SPD) Cheson et al JCO 2007
- Has limited capacity to assess extranodal disease
- Has lower prognostic impact than FDG-PET for PFS and none for OS Trotman et al Lancet Hematol 2014 Vol1 p1 n1

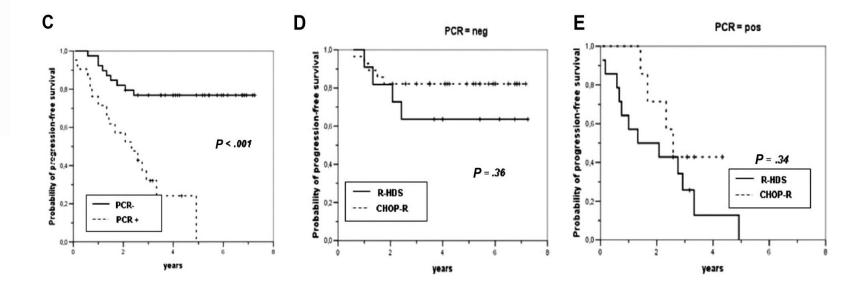

Molecular analysis:

- Has the highest sensitivity among available methods in CLL and MCL
- FL are an excellent model due to t(14;18) chr. Translocation Gribben et al. Blood 1994

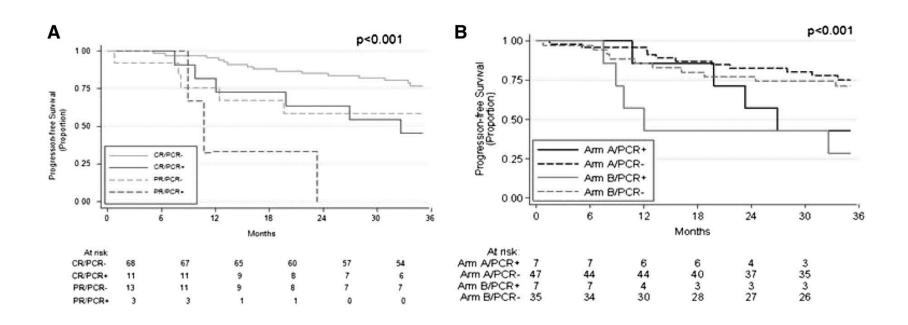
Schematic representation of t(14;18) chromosomal translocation



MRD may indicate depth of remission and predict relapse


Prognostic role of Minimal residual disease and beta2microglobulin in patients with FL

Lopez-Guillermo, A. et al. Blood 1998;91:2955-2960



Minimal residual disease assessment of the GITMO randomized trial comparing R-CHOP vs R-HDS in high risk FL patients

Ladetto, M. et al. Blood 2008;111:4004-4013

Effect of MRD by response status and treatment group.

Ladetto M et al. Blood 2013;122:3759-3766

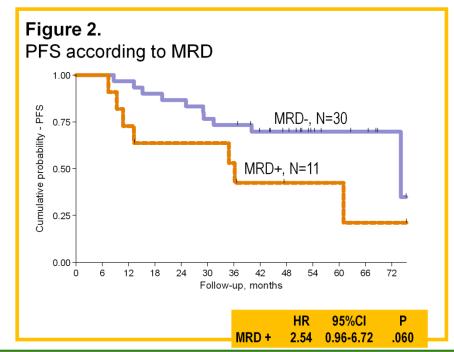
Current problems with MRD in FL

- No universal marker (t(14;18) available in~60%)
- Needs BM aspirate
- Compartment phenomenon (BM, PB and LN)
- Timing of MRD is uncertain
- No clear understanding of very low concentration of FL cells (false positives)
- No study has ever correlated MRD and FDG PET

PET RESPONSE AND MINIMAL RESIDUAL DISEASE IMPACT ON

PROGRESSION-FREE SURVIVAL IN PATIENTS WITH FOLLICULAR LYMPHOMA

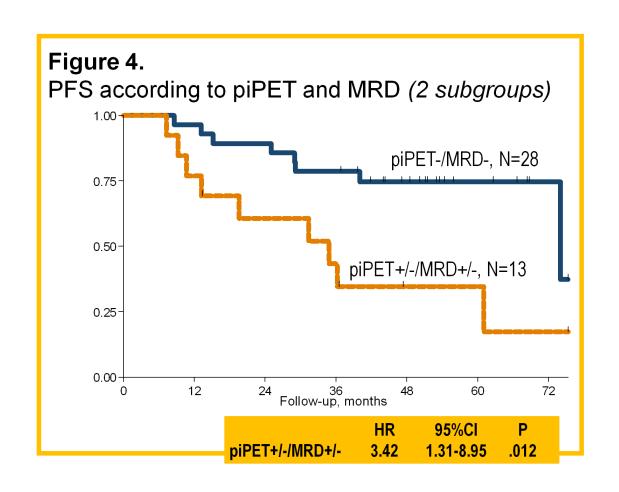
WWW.FILINF.IT


Poster B10

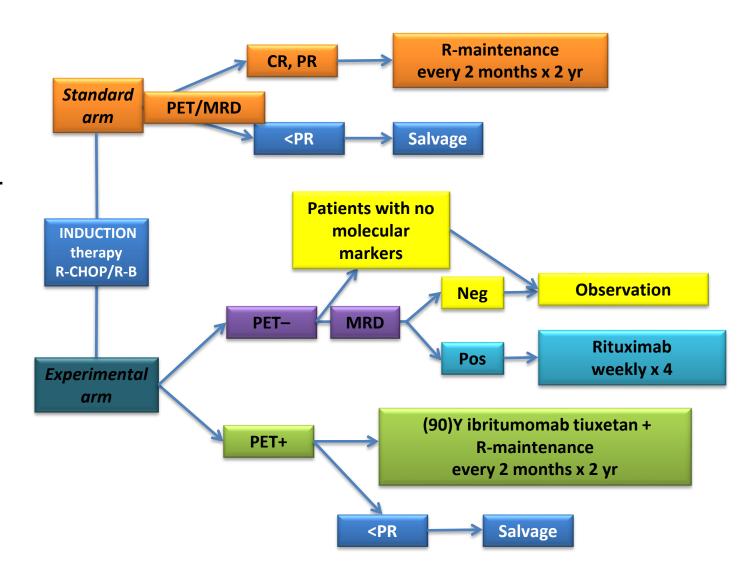
- Pts with centrally reviewed PET(5PS x3 with liver cutoff) (FOLL05; N=79)
- Baseline search for t(14;18)*(N=68)
- MRD analysis* on postinduction BM sample (N=41)

Figure 1. PFS according to piPET 1.00 Sumulative probability - PFS 0.75 piPET- (score 0-3), N=36 0.50 piPET+ (score 4-5), N=5 0.25 0.00 54 60 12 18 36 42 66 Follow-up, months HR 95%CI P .028 piPET + 3.62 1.15-11.4

Table 1. Distribution of cases according to piPET and MRD


	MRD -	MRD+			
piPET-	28 (68%)	8 (20%)			
piPET+	2 (5%)	3 (7%)			
P = 0.110 K=.249(FAIR)					

PET RESPONSE AND MINIMAL RESIDUAL DISEASE IMPACT ON PROGRESSION-FREE SURVIVAL IN PATIENTS WITH FOLLICULAR LYMPHOMA


Poster B10

FOLL12 TRIAL DESIGN (EudraCT Number: 2012-003170-60) **1° line, stage II–IV, FL** (P.I. M. Federico)

FOLLICULAR NHL
Grade I-II-IIIa
Age 18-75
Stage II-IV
Active disease
FLIPI2≥1

Preliminary analysis of PET and t(14;18) from the FOLL12 clinical trial

- 193 patients enrolled at 8/2014
- All baseline and restaging PET were centralized and reviewed at the end of induction therapy (Widen)
- Molecular analysis was performed timely at registration and at the end of therapy* by FIL MRD network.
- 118 FL had a detectable t(14;18)(61%) at time of diagnosis (LN, BM or PB)
- Preliminary results are available for
 - Staging PET and qualitative molecular analysys (N=118)*
 - Staging PET and quantitative molecular analysys (N=83)*
 - Not enough data for restaging PET and MRD analysis

Baseline characteristics (n=118)

Variable	N	%pend.	n (%)		
BM (IHC) +	118	-	67 (57)		
PET bone +	118	-	40 (34)		
t(14;18) BM qual +	118	-	77 (65)		
t(14;18) PB qual +	111	6	66 (59)		
t(14;18) + (BM or PB +)	118	-	79 (67)		
			Median (2.5-97.5°)		
t(14;18) BM quant *	83	30	-2.30 (-8; 0.270)		
t(14;18) PB quant *	75	36	-2.40 (-8; 0.130)		

^{*} Quantitative bcl2 MRD in Log10

PET and t(14;18) qualitative test as surrogates for BM involvement in FL

	Sens	Spec	PPV	NPV	ACC.
FDG-PET (bone)	0.45	0.8	0.75	0.53	0.6
t(14;18) (BM)	0.72	0.39	0.61	0.51	0.58
PET and t(14;18)	0.62	0.58	0.81	0.35	0.61

Integrating PET and MRD in follicular lymphoma

Conclusions

- Both FDG-PET and t(14;18) analysis are good techniques to study FL and there is a rationale to combine them.
- Very preliminary results suggest that it is useful to integrate PET and MRD analysis (staging and restaging)
- FOLL12 trial will provide new data on PET and MRD correlation
- In the future new molecular techniques (NGS) will probably overcome some of the current limitations of MRD analysis in FL and other NHL.

Acknowledgments

FIL datacenter

Massimo Federico

Alessandra Dondi

Monica Bellei

Martina Manni

Luigi Marcheselli

FIL Imaging committee

Annibale Versari

Antonella Franceschetto

Luca Guerra

Stephan Chauvie

FIL MRD network

Sara Galimberti

Marco Ladetto

Gianluca Gaidano